Chapter 9: Current Electricity

5 Sources of Electricity

- Cells are the source of direct current (DC), where current flows from the positive to the negative terminal.
- DC (Direct Current): Constant in magnitude and flows in one direction.

Types of Cells

- 1. **Primary Cells**: Irreversible chemical reaction; cannot be recharged (e.g., dry cell, voltaic cell).
- 2. **Secondary Cells**: Reversible reaction; rechargeable and reusable (e.g., lead-acid battery, nickel-iron cell).

Electric Current

• Defined as the rate of flow of electric charge:

I = Q/t

(Current = Charge / Time)

• SI unit: Ampere (A)

1 A = 1 C/s

- **Electronic Current**: Flow of electrons (negative to positive).
- **Conventional Current**: Flow of positive charge (positive to negative).

Circuit Symbols and Devices

- Cell/Battery: Source of DC.
- **Key (Switch)**: Opens/closes the circuit.
- **Resistor/Rheostat**: Controls current by offering resistance.
- Ammeter: Measures current (connected in series).
- Voltmeter: Measures potential difference (connected in parallel).
- Galvanometer: Detects weak current and its direction.
- Load: Any device using electrical energy.
- Connecting Wires: Conduct current between components.

♀ Simple Circuit

• A basic circuit includes a **cell, switch, and bulb**. The bulb glows when the switch is closed (circuit is complete).

© Conductors and Insulators

- Conductors: Allow current (many free electrons).
- **Insulators**: Block current (very few free electrons).

Closed vs Open Circuit

- Closed Circuit: Current flows.
- Open Circuit: No current flows.

Flow of Electrons

- Electrons move from **high to low concentration**, from cathode to anode in a cell.
- Current flows from higher to lower potential (opposite to electron flow).

Potential Difference

Work done per unit charge:

$$V = W / Q$$

SI unit: Volt (V)

Electrical Resistance

• **Resistance** (**R**): Obstruction to current flow.

$$\mathbf{R} = \mathbf{V} / \mathbf{I}$$

• SI unit: Ohm (Ω)

$$1 \Omega = 1 V / 1 A$$

M Factors Affecting Resistance

- 1. **Material** Better conductors have less resistance.
- 2. **Length** Longer wire = more resistance.
- 3. **Thickness** (Area) Thicker wire = less resistance.
- 4. **Temperature** Higher temp = more resistance.

♦ Ohm's Law

- $\mathbf{V} \propto \mathbf{I}$ (at constant temperature)
- Resistance remains constant as current changes.

Solution Efficient Use of Energy

- Aim: Reduce energy cost and usage.
- Methods:
 - o Proper insulation in homes.
 - Use of LED bulbs.

Social Initiatives

• Develop **energy-efficient** devices and **eco-friendly** technologies to reduce environmental impact and save resources.

